Security & Privacy by Design Principles (S|P)

The S|P establishes 32 common-sense principles to guide the development and oversight of a modern security and privacy program. The S|P is sourced from the Secure Controls Framework (SCF), which is a free resource for businesses. The SCF’s comprehensive listing of nearly 350 cybersecurity and privacy controls is categorized into 32 domains that are mapped to over 200 statutory, regulatory and contractual frameworks. Those applicable SCF controls can operationalize the S|P principles to help an organization ensure that secure practices are implemented by design and by default. Those 32 S|P principles are listed below:

1. Security & Privacy Governance
 Govern a documented, risk-based program that encompasses appropriate security and privacy principles to address all applicable statutory, regulatory and contractual obligations.

2. Asset Management
 Manage all technology assets from purchase through disposition, both physical and virtual, to ensure secured use, regardless of the asset’s location.

3. Business Continuity & Disaster Recovery
 Maintain the capability to sustain business-critical functions while successfully responding to and recovering from incidents through a well-documented and exercised process.

4. Capacity & Performance Planning
 Govern the current and future capacities and performance of technology assets.

5. Change Management
 Govern change in a sustainable and ongoing manner that involves active participation from both technology and business stakeholders to ensure that only authorized changes occur.

6. Cloud Security
 Govern cloud instances as an extension of on-premise technologies with equal or greater security protections than the organization’s own internal controls.

7. Compliance
 Oversee the execution of cybersecurity and privacy controls to create appropriate evidence of due care and due diligence, demonstrating compliance with all applicable statutory, regulatory and contractual obligations.

8. Configuration Management
 Govern the establishment and ongoing management of secure configurations for systems, applications and services according to vendor-recommended and industry-recognized secure practices.

9. Continuous Monitoring
 Maintain situational awareness of security-related events through the centralized collection and analysis of event logs from systems, applications and services.

10. Cryptographic Protections
 Utilize appropriate cryptographic solutions and industry-recognized key management practices to protect the confidentiality and integrity of sensitive data both at rest and in transit.

11. Data Classification & Handling
 Publish and enforce a data classification methodology to objectively determine the sensitivity and criticality of all data and technology assets so that proper handling and disposal requirements can be followed.

12. Embedded Technology
 Provide additional scrutiny to the risks associated with embedded technology, based on the potential damages posed when used maliciously.

13. Endpoint Security
 Harden endpoint devices to protect against reasonable threats to those devices and the data they store, transmit and process.

14. Human Resources Security
 Foster a security and privacy-minded workforce through sound hiring practices and ongoing personnel management.

15. Identification & Authentication
 Implement an Identity and Access Management (IAM) capability to ensure the concept of “least privilege” is consistently implemented across all systems, applications and services for individual, group and service accounts.

16. Incident Response
 Maintain a practiced incident response capability that trains all users on how to recognize and report suspicious activities so that trained incident responders can take the appropriate steps to handle incidents, in accordance with an Incident Response Plan (IRP).

17. Assurance
 Utilize an impartial assessment process to validate the existence and functionality of appropriate security and privacy controls, prior to a system, application or service being used in a production environment.

18. Maintenance
 Utilize secure practices to maintain technology assets, according to current vendor recommendations for configurations and updates, including those supported or hosted by third-parties.

19. Mobile Device Management
 Govern mobile devices through a centralized or decentralized model to restrict logical and physical access to the devices, as well as the amount and type of data that can be stored, transmitted or processed.

20. Network Security
 Architect a defense-in-depth methodology that enforces the concept of “least functionality” through restricting network access to systems, applications and services.

21. Physical & Environmental Security
 Implement layers of physical security and environmental controls that work together to protect both physical and digital assets from theft and damage.

22. Privacy
 Implement a privacy program that ensures industry-recognized privacy practices are identified and operationalized throughout the lifecycle of systems, applications and services.

23. Project & Resource Management
 Utilize a risk-based approach to prioritize the planning and resourcing of all security and privacy aspects for projects and other initiatives to allocate foreseeable governance, risk and compliance roadblocks.

24. Risk Management
 Govern a risk management capability that ensures risks are consistently identified, assessed, categorized and appropriately remediated.

25. Secure Engineering & Architecture
 Implement secure engineering and architecture processes to ensure industry-recognized secure practices are identified and operationalized throughout the lifecycle of systems, applications and services.

 Assign appropriately-qualified personnel to deliver security and privacy operations that provide reasonable protective, detective and responsive services.

27. Security Awareness & Training
 Develop a security and privacy-minded workforce through ongoing user education about evolving threats, compliance obligations and secure workplace practices.

28. Technology Development & Acquisition
 Govern the development process for any acquired or developed system, application or service to ensure secure engineering principles are operationalized and functional.

29. Third-Party Management
 Implement ongoing third-party risk management practices to actively oversee the supply chain so that only trustworthy third parties are used.

30. Threat Management
 Identify, assess and remediate technology-related threats to assets and business processes, based on a thorough risk analysis to determine the potential risk posed from the threat.

31. Vulnerability & Patch Management
 Utilizes a risk-based approach to vulnerability and patch management practices that minimizes the attack surface of systems, applications and services.

32. Web Security
 Govern all Internet-facing technologies to ensure those systems, applications and services are securely configured and monitored for anomalous activity.
Develop a vision, mission and strategy that supports your organization's specific needs.

An indicator of a well-run cybersecurity and privacy program is personnel at all levels clearly know their role in making the organization successful through the implementation of a vision, mission and strategy to drive its operations. This leadership is in its purest form, since it involves providing appropriate direction and empowering staff to make the right things happen. Everything starts with the assigned mission - it defines the big picture of why you have a job at your organization.

Adopt appropriate cybersecurity and privacy principles to support your strategy.

You need to identify all applicable laws, regulations and contracts that your organization is required to comply with. This includes both domestic and international cybersecurity and privacy laws, industry-specific regulations and legally binding contract requirements from clients and partners. Knowing what is required from a compliance perspective helps identify the appropriate cybersecurity and privacy principles that will best fit your organization's specific needs.

Develop policies, standards and procedures to support your cybersecurity & privacy principles.

Documentation is the foundation of any governance program and it includes written policies, standards, controls and procedures. Well-designed documentation is hierarchical and builds on supporting components to enable a strong governance structure that utilizes an integrated approach to managing requirements.

Implement appropriate controls to achieve / measure your target maturity state.

Controls are "where the rubber meets the road" in a cybersecurity and privacy program - this is where the combination of people, processes and technology come together to operationalize a cybersecurity and privacy program. Essentially, controls bring your policies and standards to life by identifying the exact requirements necessary to comply with a statutory, regulatory or contractual obligation. You may have a control set specific to NIST 800-37, PCI DSS, HIPAA, SOX, SDCC or any other compliance obligation. You might even be managing multiple control sets based on your needs.

Use those controls to assess both risk and maturity across technology and business processes.

There are numerous methodologies available for an organization to manage risk. These risk models, such as ISO 31000, OCTAVE and others. What is similar between these risk methodologies is they all have to assess how well controls are implemented and the extent that risk is reduced from the control's existence and level of maturity.

It is important to keep in mind that a "perfect" risk methodology does not exist to assess risk across technology and business processes. What matters is that the risk methodology chosen best supports how the organization actually functions. It is acceptable to have a different risk methodology used for tactical, operational and strategic risk decisions, since each methodology has its own strengths and weaknesses. The goal is to define and attain a level of optimal risk taking.

Managing risk is a process that must exist across all phases of the Secure Development Lifecycle (SDL), regardless if the solution being worked on is a system, application or service. The scope of assessing risk must consider not only the immediate assets in the scope of the SDL, but those supporting systems, processes and possibly third party service providers that impact confidentiality, integrity, availability and safety aspects.

Utilize metrics from control execution to identify areas of improvement.

The concept of "measuring control" is synonymous with gathering metrics. While metrics are a point-in-time snapshot into a control's performance, the broader view of metrics leads to longer-term trend analysis. It is through this trend analysis that your organization's leadership can identify areas of improvement. This can be done through defining Key Performance Indicators (KPIs) and Key Risk Indicators (KRI s) to have insights into the controls that are particularly important to the organization. KPIs and KRIs will differ between organizations, due to varying priorities assigned to controls from variations in statutory, regulatory and contractual obligations that affect the relative importance of certain controls.

Copyright © 2019 by Secure Controls Framework Council, LLC (SCF Council). All rights reserved.

All text, images, logos, trademarks and information contained in this document are the intellectual property of SCF Council, unless otherwise indicated. Modification of any content, including text and images, requires the prior written permission of SCF Council. Requests may be sent to support@securecontrolsframework.com.